
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Unified Wear-leveling Technique for NVM-based
Buffer of SSD

Young Min Park, Joonhyeok Yeom, Dohyun Kim, and Eui-Young Chung, Member, IEEE

Abstract—Since the gradual emergence of DRAM cost issues
from the perspective of solid-state drive (SSD) system design,
studies to replace DRAM buffer with a non-volatile memory
(NVM) have been conducted. However, the inferior durability of
NVM requires additional wear-leveling algorithms for the buffer.
Related works on the wear-leveling of the SSD internal buffer are
significant only for specific applications or restricted partitions
separated by user data and metadata. This paper proposes
a novel wear-leveling technique that covers the entire buffer
without being constrained by specific applications. We introduce
metadata characteristic-aware allocation (MCAA), which utilizes
an appropriate hot data detection scheme depending on the type
of update pattern on metadata. We also propose unified wear-
leveling (UWL) that hierarchically integrates the wear-leveling
techniques of each partition, including MCAA. The proposed
method improves the maximum write count by 39.3% and
the standard deviation of the wear-out by 25.9% on average
compared to the conventional technique.

Index Terms—SSD, non-volatile memory, endurance, buffer
wear-leveling, flash translation layer, metadata.

I. INTRODUCTION

IN the traditional solid-state drive (SSD) architecture,
DRAM is utilized as an internal buffer to address the low

latency and throughput of NAND flash memory (NFM). The
internal buffer serves as a cache memory for user data and flash
translation layer (FTL)-related metadata and is divided into
partitions for each data type. Therefore, the user data partition
has a data structure in page units, and the metadata partition
is composed of data structures of general data types such as
integer and bool. As the capacity of the SSD expands, the
size of this internal DRAM has also increased proportionally,
which has resulted in increased manufacturing costs [1].

As an approach to reduce cost, studies have been conducted
to replace the DRAM with cost-efficient non-volatile memory
(NVM), such as phase-change RAM (PRAM) or magnetore-
sistive RAM (MRAM) [2]–[10]. NVM is a suitable device
for replacing DRAM with read and program latency similar
to DRAM and non-volatility that does not require the refresh
operation. However, the limited durability of NVM compared
to the semi-permanent durability of DRAM can cause lifespan
issues when NVM is used as a buffer. Therefore, wear-leveling

This work was supported by Institute of Information communications
Technology Planning Evaluation(IITP) grant funded by the Korea govern-
ment(MSIT) (No.2022-0-00050, Development of PIM Computing Architec-
ture based on Data-Flow). The EDA tool was supported by the IC Design
Education Center(IDEC), Korea. (Corresponding author: Eui-Young Chung.)

The authors are with the School of Electrical and Electronic
Engineering, Yonsei University, Seoul 03722, South Korea (e-
mail: ympark0225@yonsei.ac.kr; joonhyeok yeom@yonsei.ac.kr;
middk@yonsei.ac.kr; eychung@yonsei.ac.kr)

of the buffer area is essential to maximize the lifespan of the
buffer [11].

In an NVM-based buffer of an SSD, the endurance of
each buffer partition occupied by user data and metadata is
consumed differently. User data are updated based on the
page size, and metadata are updated using the cache line
size. Therefore, each buffer partition should be handled using
appropriate techniques. Consequently, previous studies [12]–
[14] investigated wear-leveling techniques by focusing on
one of the partitions. In particular, Curling [12], which is
a technique for the metadata partition, improves the life-
time of the buffer via swap-based management of grouped
hot data. Conversely, multi-bloom filter-based wear-leveling
(MBF) [14], a technique used for the user data partition, has
achieved noticeable performance improvements by evicting
cold data and replacing its location with hot data.

However, these studies have two limitations. First, contrary
to the scheme for user data, the technique for the metadata
partition is host application-specific because the hot data are
detected via profiling during design time. Second, because it
manages only transactions in a specific partition, managing
durability consumption by transactions occurring in other
partitions is insufficient.

In this study, we propose a novel wear-leveling technique
through step-by-step wear-leveling from the partition to the
entire buffer to overcome these issues. The main contribution
of our proposal is twofold. First, we propose a metadata
characteristic-aware allocation (MCAA) to improve the local
wear-leveling of the metadata partition. Metadata is classified
into two types: metadata with fixed hot spots and metadata
with random hot spots due to the operation characteristics of
the SSD. The MCAA leverages suitable hot data detection for
two types of metadata to address the challenges of traditional
metadata partition techniques. Second, we propose unified
wear-leveling (UWL), which equalizes the wear-out of the
entire buffer based on local wear-leveling.

This architecture achieves local wear-leveling within the
user data partition and metadata partition using MBF and
MCAA-based swap management, respectively. Subsequently,
the durability of the entire buffer is equalized as the physical
location of each partition is gradually shuffled through the
extended swap operation.

II. RELATED WORK AND MOTIVATION

A. Related works

Curling [12], for the metadata partition, focuses on extreme
updates concentrated in a specific narrow metadata partition.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3291671

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yonsei Univ. Downloaded on August 14,2023 at 06:38:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

(a) Effect of conventional techniques for partitions

(b) Wear-out deviation between partitions on simple integration of
techniques

Fig. 1. Visualization of write counts on the buffer with
conventional techniques in the Financial benchmark.

To distribute intensive updates, they suggest to manage the
metadata in which intensive updates appear by grouping them
into hot regions. The hot spots of metadata in this management
are analyzed based on profiling host application, and are stati-
cally allocated to the hot regions with the help of the compiler.
Then, wear-leveling is performed sequentially swapping the
clustered hot regions with cold regions.

Another work for the user data partition, MBF [14], pre-
sented a wear-leveling technique that focused on managing
user data transactions of page size and neglected the metadata
transactions of a relatively small size. This technique distin-
guishes the hot and cold page numbers in the user data entries
using an MBF. Then, by evicting the data in the existing cold
page entries to NFM and replacing it with the hot data of user
data to be updated, the endurance in the user data partition is
balanced.

B. Motivation

Fig.1(a) shows the excellent wear-leveling effect of each
technique in partitions as well as their limitations. For MBF,
the peak update in the metadata area cannot be controlled
because the metadata area traffic is ignored. In contrast, the
write traffic in the user data partition is evenly distributed.
Thus, limited to the user data partition, we can exploit it
as a technique for the user data partition without additional
modification. Curling also improves the write distribution of
metadata; however, it does not cover the intensive traffic of
the user data partition. A simple integration of wear-leveling
techniques for each partition can serve as an approach to
address the technological limitations.

Fig.1(b) shows the experimental results of the simple in-
tegration of the techniques of each partition. Here, wear-
leveling of each partition is achieved by adopting a technique
suitable for the transaction characteristics of the partition.
However, the experimental results also show that the user data
partition accumulates 2.5 times more programs on average

struct PL{
BLK blk[BLK_PER_PL];
int param_pl_0;
…
int param_pl_m;

}

struct BLK {
PG pg[PG_PER_BLK];
int param_blk_0;
…
int param_blk_o;

}

struct PG {
int param_pg_0;
int param_pg_1;
…
bool param_pg_p;

}

unsigned int L2P[AVAIL_PG_CNT];
struct DIE{

PL pl[PL_PER_DIE];
int param_die_0;
…
int param_die_n;

}

Fig. 2. Basic metadata structure of page-level mapping FTL.

than the metadata partition because of the different total sizes
of transactions. The management method for each partition
inevitably causes these differences in endurance consumption
between partitions. Consequently, the user data partition is the
first to wear out and reach the end of the buffer lifetime. If
the deviation between partitions can be mitigated, lifetime of
the entire buffer can be further improved.

We also note the need to address the limitation of the
application-specific wear-leveling technique for the metadata
partition from the FTL operation and metadata structure. Fig.2
shows an example of a typical metadata structure. These
configurations are generic and independent of the language of
the firmware; only the hierarchical constructs depend on the
address translation type of the FTL. We use a page-level FTL
for the description in this brief because most SSD prioritizes
performance and adopt page-level mapping [15].

Logical to physical (L2P) mapping information is stored
in an array with the size of AVAIL PG CNT, indicating the
page count available to NFM. For metadata for the physical
information of NFM (MPIN), the information is stored in a
hierarchical data structure that resembles the architecture of
the NFM. For instance, the data structure for a block, BLK,
consists of PG PER BLK(representing the number of pages
per block) instances of a page and parameters associated with
the block. Parameters such as param blk 0 in the BLK can
be used to record writable pages for the essential operation
of the FTL or block erase counts for garbage collection.
While updating these MPINs, the sequential program order
and wear-leveling mechanism of NFM, which uniformly uses
blocks in all the planes, results in architecture-dependent write
patterns and fixed hot spots on the MPIN. Therefore, metadata
are divided into two types with different hot spot occurrence
characteristics: the L2P table and MPIN.

In this brief, we reinforce the technique for the metadata
partition based on the above-mentioned motivation. We also
introduce unified wear-leveling to balance the endurance of
the entire buffer by integrating the partition techniques.

III. PROPOSED METHOD

We introduce two key developments in our proposed
method. First, we propose MCAA that differentiates hot data
allocation according to metadata type. Second, we propose
UWL, which hierarchically integrates MCAA-based swap
management and MBF, which are techniques for partitions.

A. Metadata Characteristic-aware Allocation

The core of swap-based metadata partition management
is detecting and clustering hot data into hot regions, which
are intensively managed. Fig.3 shows the metadata allocation
strategy in the conventional curling (CC) and the proposed
MCAA. In the CC, metadata are statically allocated into
cold regions and hot regions based on the profiling of the

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3291671

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yonsei Univ. Downloaded on August 14,2023 at 06:38:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

Hot regionCold region

(Conv.) Hot metadataCold metadata

Original metadata

(Prop.) LHTCold MPIN Original L2P table Hot MPIN

+ Hot L2PHot MPIN

+

+ Cold L2PCold MPIN

Fig. 3. Metadata allocation strategy in the conventional and
the proposed MCAA.

History Table w/ bypass mechanism

LHT entries full?

Y

Hit LHT?
Y

N

𝐶𝑛𝑡𝑏𝑦𝑝𝑎𝑠𝑠> PT

Update LHTUpdate original l2p table

Evict victim of LHT

𝐶𝑛𝑡𝑏𝑦𝑝𝑎𝑠𝑠 = 0𝐶𝑛𝑡𝑏𝑦𝑝𝑎𝑠𝑠 ++

N
Y

N

Change L2P mapping information

Fig. 4. Bypass mechanism of the LHT.

application. Therefore, it is impossible to respond to various
applications at runtime owing to the characteristics of the L2P
table. To solve this issue, we use different allocation strategies
to keep hot data in hot regions according to the two types of
metadata mentioned in Section II-B, MPIN and L2P table.

1) MPIN: Owing to sequential program order and MPIN
structure, we can infer that MPIN included in higher layers
such as die, plane, and block require continuous updates and
will become fixed hot spots. In contrast, most of the MPINs
related to the page are cold data. Therefore, hot and cold MPIN
can be distinguished by profiling the FTL and MPIN structures
before runtime.

2) L2P table: In contrast to MPIN, the L2P table represents
an application-dependent update pattern because it is indexed
by a logical address of a host request. Thus, hot spots in the
L2P table are unpredictable and should be handled at runtime.
To concentrate the traffic of updating L2P information in hot
regions, we allocate the L2P history table (LHT) for each
plane of NFMs to hot regions separately from the original
L2P table and utilize this by modifying the FTL. A single
entry in the LHT contains a logical address, physical address,
and two variables for the least recently used (LRU) operation.
During runtime, the modified FTL preferentially updates L2P
information to the LHT. The FTL operates the LHT as an LRU
victim policy and evicts victim entries to the original mapping
table. The LHT then maintains the host request logical address
where continuous L2P updates due to temporal locality.

However, misses in the LHT cause additional write am-
plification owing to updating the original L2P table of the
victim entry. To minimize the miss penalty, we implemented
a bypass mechanism. Fig.4 shows the L2P information up-
date flow, including the bypass algorithm. The LHT updates
information only when bypass count (Cntbypass) reaches the
predetermined threshold(PT). If the condition is not satisfied,
Cntbypass is incremented and the original table updates the
L2P information.

Intermediate addr.

Physical addr.

Logical addr.

regional equalized user data

MCAA-based metadatauser data

globally equalized (user data + metadata)

swap management

MBF 1st WL layer

2nd WL layer

hot regions of MCAAuser data

Physically Separated Nth entry

(N+1)th entry(N-1)th entry… … …

case of user data transaction

Physical addr.

Fig. 5. Example of incomplete transaction of user data.

Intermediate addr.

Physical addr.

Logical addr.

locally equalized user data

MCAA-based metadatauser data

globally equalized (user data + metadata)

swap management

MBF 1st WL layer

2nd WL layer

hot regions of MCAAuser data

Physically Separated Nth entry

(N+1)th entry(N-1)th entry… … …

case of user data transaction

Physical addr.

Fig. 6. Unified wear-leveling with MCAA.

B. Unified wear-leveling with MCAA

The swap-based management of MCAA-based metadata
and MBF on user data can accomplish local wear-leveling
in each partition. As mentioned in Section II-B, differences
in the wear-out between partitions cannot be resolved with
simple integration of techniques for partitions. The physical
location of partitions should be shuffled through separate
management to balance the endurance of the entire buffer.
However, separate management causes overhead owing to
additional swap operations. To minimize the overhead due to
separate management, we propose a UWL that hierarchically
integrates wear-leveling techniques for partitions. In UWL, we
extend the operation of the swap-based management of MCAA
to the entire buffer and leverage it. Extending the coverage of
MBF to the entire buffer is impossible because the mechanism
of MBF is the replacement of data and not the swap.

One problem needs to be solved to expand the range of the
operation of the swap-based management of the MCAA. Fig.5
shows a problem case of an arbitrary user data entry separated
by the hot regions of the MCAA. In this case, we implement
a buffer request divider to supplement user data transactions.
The buffer request divider preferentially converts the logical
information of user data requests to physical information.
Then, the physical address of the user data request is compared
with the start and end address of hot regions to determine
whether the requested user data entry is physically separated.
If hot regions of the MCAA separate user data entry, the buffer
request divider splits the original request into sub-requests to
maintain the integrity of the data IO.

Fig.6 shows an overview of the UWL consisting of two
wear-leveling layers. The write distribution is performed
as follows. First, user data are distributed uniformly at
the intermediate address through the MBF of the first
wear-leveling layer. Subsequently, hot metadata distinguished
through MCAA are distributed to the entire buffer through
the periodic swap management of the second wear-leveling
layer. Simultaneously, the user data partition and metadata
partition are gradually shuffled to equalize globally by the
swap operation of the second wear-leveling layer. As this
swap operation progresses, the logical to the physical address
mapping of the entire buffer continuously shifts. Within swap
management, the logical to physical mapping information of
the buffer is maintained using simple arithmetic-based address
translation similar to CC.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3291671

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yonsei Univ. Downloaded on August 14,2023 at 06:38:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

TABLE I. Hardware specifications.

NFM

NFM capacity 4GB MLC
NFM channel/way/plane 4/4/1

Page size(KB) 16384

Latency
tR(us) 45

tPROG(us) 700
tBERS(ms) 3.5

PRAM
PRAM capacity(MB) 8 12 20

Latency tR(ns) 45
tPROG(ns) 600

0
0.2
0.4
0.6
0.8

1
1.2

ADS Exch Financial2 MSN MSR TPC_C TPC_E Avg.

N
o
rm

al
iz

ed

m
ax

 w
ri

te
 c

o
u
n
t

CC MCAA(8) MCAA(16) MCAA(24) MCAA(32)

(a) Maximum write count of the buffer.

0
0.2
0.4
0.6
0.8

1
1.2

ADS Exch Financial2 MSN MSR TPC_C TPC_E Avg.

N
o
rm

al
iz

ed

st
an

d
ar

d
 d

ev
ia

ti
o
n

CC MCAA(8) MCAA(16) MCAA(24) MCAA(32)

(b) Standard deviation of the write counts of the buffer.
Fig. 7. Wear-leveling performance of MCAA according to
number of entries in the LHT.

IV. EXPERIMENT

A. Experimental Setup

We implemented a trace-driven SSD simulator using the
Synopsys Platform Architect to evaluate the MCAA and
UWL. The implemented SSD operates a page-level FTL which
performs greedy garbage collection. We applied PRAM to the
buffer, and Table I shows hardware specifications for NFM
and PRAM, respectively. In particular, to observe the global
wear-leveling effect of the UWL, experiments were conducted
in various environments with buffer sizes of 8, 12, and 20MB.
The workload used in the evaluation was acquired from [16]
and [17], and their characteristics are summarized in [18].

B. Experimental Results

1) Effect of MCAA: We evaluated MCAA compared with
CC in the metadata partition. Figs.7(a) and 7(b) demonstrate
the wear-leveling performance of MCAA according to the
number of entries in the LHT. In the figure legend, MCAA(N)
indicates that the number of LHT entries for each plane in
MCAA is N . As shown in Fig.7(a), MCAA dramatically re-
duces the maximum write count by 51.0% on average over CC.
There is a fluctuation of wear-leveling performance according
to the LHT size change due to the characteristic of reflecting
only the outlier, but MCAA shows improvement in specific
benchmarks such as ADS, Exchange, Financial2, and MSR,
in which updates of specific logical addresses are excessive
as summarized in [18]. Because the peak count is eliminated
by effectively handling the random hot spot through the LHT
in the metadata partition. The visualized write count graphs
related to the experiment are provided in [18]. For the standard
deviation, there is an improvement of 3.1% compared to CC
because of the removal of the peak write count as shown in
Fig.7(b). Especially, It is observed that as the number of LHT

0.85

0.9

0.95

1

1.05

ADS Exch Financial2 MSN MSR TPC_C TPC_E Avg.

N
o
rm

al
iz

ed

to
ta

l
w

ri
te

 c
o
u
n
t

PT(0) PT(1) PT(2) PT(3) PT(4)

(a) Total write counts on buffer.

0

0.5

1

1.5

ADS Exch Financial2 MSN MSR TPC_C TPC_E Avg.

N
o
rm

al
iz

ed

m
ax

 w
ri

te
 c

o
u
n
t

PT-0 PT-1 PT-2 PT-3 PT-4

(b) Maximum write count on buffer
Fig. 8. Overhead improvement and performance degradation
according to PT change.

0

0.2

0.4

0.6

0.8

1

1.2

8
M

B

1
2

M
B

2
0

M
B

8
M

B

1
2

M
B

2
0
M

B

8
M

B

1
2

M
B

2
0

M
B

8
M

B

1
2

M
B

2
0

M
B

8
M

B

1
2

M
B

2
0

M
B

8
M

B

1
2

M
B

2
0

M
B

8
M

B

1
2

M
B

2
0

M
B

8
M

B

1
2

M
B

2
0

M
B

Financial2 MSN MSR Avg. Financial2 MSN MSR Avg.

Maximum write count Standard deviation

MCAA-MBF UWL

Fig. 9. Wear-leveling performance of UWL normalized to
MCAA-MBF.

entries increases, the concentration of LHT updates in specific
entries decreases, resulting in a reduction in the standard
deviation. This observation demonstrates the effectiveness of
increasing the LHT size in MCAA for achieving improved
wear-leveling performance.

Figs.8(a) and 8(b) show the write amplification reduction
effect and performance degradation, respectively, when we
apply the bypass mechanism to the MCAA with 16 entries
of the LHT. In the figure legend, PT(N) represents the model
in which the value of the predetermined threshold is N in the
bypass mechanism. PT(0) is the same as the general model
for operating the LHT without the bypass mechanism. As the
value of PT increases, Fig.8(a) shows that the total write counts
decrease by 3.1% to 5.1% on average compared to PT(0).
However, even if the value of PT increases, the maximum write
count, an indicator of wear-leveling performance, has only a
6.0% performance degradation on average compared to PT(0),
even in a case such as PT(4) as shown in Fig.8(b). These
two results indicate that the bypass mechanism effectively
eliminates the write amplification caused by unnecessarily
registering logical addresses with weak temporal locality in
the LHT. Hence, MCAA with bypass mechanism can expect
a peak write count reduction of approximately 50% on av-
erage compared to CC and can contribute to preventing the
shortening of the lifespan of the metadata partition.

2) Wear-leveling Performance of UWL: In the experiment,
we evaluated the UWL by varying the buffer size with bench-
marks such as Financial2, MSN, and MSR; these benchmarks
have sufficient write requests for observing the global wear-
leveling effect. Fig.9 shows the results of the wear-leveling
performance of UWL in comparison with that of MCAA-
MBF. In the 20MB environment, UWL showed a noticeable
improvement of 39.3% in terms of the maximum write count
and 25.9% in terms of the standard deviation over MCAA-

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3291671

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yonsei Univ. Downloaded on August 14,2023 at 06:38:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

0.9

0.95

1

1.05

ADS Exch Financial2 MSN MSR TPC_C TPC_E Avg.

N
o
rm

al
iz

ed

to
ta

l
w

ri
te

 c
o
u
n
ts

w/oWL CC MCAA-MBF UWL

(a) Total write counts on buffer.

0.85

0.9

0.95

1

ADS Exch Financial2 MSN MSR TPC_C TPC_E Avg.

N
o
rm

al
iz

ed

w
ri

te
 b

an
d
w

id
th

w/oWL CC MCAA-MBF UWL

(b) Write bandwidth of SSD.

0.9

0.95

1

1.05

ADS Exch MSN MSR TPC_C TPC_E Avg.

N
o
rm

al
iz

ed

m
ax

 r
ea

d
 l

at
en

cy

w/oWL CC MCAA-MBF UWL

(c) Maximum read latency.

Fig. 10. Overhead of wear-leveling.

MBF. On the other hand, in the 8MB environment, the MSN
experiment showed an increase of 6.6% in standard deviation.
This is because the MSN benchmark has a low locality,
causing the user data partition to already be evenly utilized,
and aligned with the average of the entire buffer at this
environment. With the swap operation of UWL, the increase in
noise led to the observed result of increased standard deviation.
The detailed write count graphs related Fig.9 are provided in
[18]. These results indicate that the UWL effectively addressed
the limitation of the MCAA-MBF structure, in which the
variation in the endurance consumption between partitions
increases with the increase in the buffer size. This mitigation
effect of UWL becomes essential in real world scenarios
where workloads consist of combinations of benchmarks with
varying characteristics despite the slight degradation observed
in extreme case.

3) Overhead Analysis: The MCAA-based swap manage-
ment and buffer request divider have negligible area overhead
if they are implemented in the hardware. This is because they
require fewer than two steps of arithmetic operations based
on fewer than ten simple parameters, similar to CC. For an
additional buffer area due to the use of the LHT, 16 bytes
for one entry are consumed, and because each plane has 16
entries, 16 planes make a total of 4096 bytes. This is also
negligible overhead with less than 0.05% of the total size of
the buffer at 20MB. In addition, the swap-based wear-leveling
technique inevitably caused an overhead, which increased
the total write counts of the buffer. Fig.10(a) demonstrates
the total number of writes that increased due to the write
amplification of MCAA-MBF and UWL in an environment
where the MCAA has a PT value of 2 and the number of
entries is 16. Even with workloads such as extreme ADS with
4.0% overhead, the average overhead of the write amplification
increases by 2.3% over an environment without wear-leveling
is sufficient. Figs.10(b) and 10(c) depict decrease in the write
bandwidth and increase in the maximum read latency, which
are indicators of system performance. An average system
performance degradation of 2.2% was observed in the write
bandwidth, and the read latency was reduced by 2.1% on

average. This performance overhead is tolerable for extending
the lifespan of the internal buffer of an SSD.

V. CONCLUSION

We propose a novel wear-leveling scheme for the NVM-
based buffer in an SSD. MCAA reduces the peak writes
counts on the metadata partition by 51.2% and maintains the
standard deviation as compared to the conventional method.
Unlike CC, the MCAA does not require profiling for each
application change. In addition, the UWL with MCAA reduces
the maximum write count and standard deviation by 39.3%
and 25.9%, respectively, as compared to the simple integration
of techniques for each buffer partition. The UWL has a
negligible overhead of 2% and 0.05% under, respectively, for
the performance and buffer area compared to the existing
scheme. Our proposed technique will be more beneficial in
a practical environment as it maintains a flexible performance
that is suitable for various applications.

REFERENCES

[1] S. Park, Y. Kim, B. Urgaonkar, J. Lee, and E. Seo, “A comprehensive
study of energy efficiency and performance of flash-based ssd,” Journal
of Systems Architecture, vol. 57, no. 4, pp. 354–365, 2011.

[2] S. Kang, S. Park, H. Jung, H. Shim, and J. Cha, “Performance trade-offs
in using nvram write buffer for flash memory-based storage devices,”
IEEE Transactions on Computers, vol. 58, no. 6, pp. 744–758, 2009.

[3] Y. Liu, C. Zhou, and X. Cheng, “Hybrid ssd with pcm,” in 2011 11th
Annual Non-Volatile Memory Technology Symposium Proceeding, 2011,
pp. 1–5.

[4] N. Lu, I.-S. Choi, S.-H. Ko, and S.-D. Kim, “An effective hierarchical
pram-slc-mlc hybrid solid state disk,” in 2012 IEEE/ACIS 11th Inter-
national Conference on Computer and Information Science, 2012, pp.
113–118.

[5] Q. Wei, C. Chen, and J. Yang, “Cbm: A cooperative buffer management
for ssd,” in 2014 30th Symposium on Mass Storage Systems and
Technologies (MSST), 2014, pp. 1–12.

[6] J.-Y. Kim, S.-H. Park, H. Seo, T. You, and E.-Y. Chung, “A read-while-
write-based out-of-order scheduling for high performance nand flash-
based storage devices,” in The 18th IEEE International Symposium on
Consumer Electronics (ISCE 2014), 2014, pp. 1–2.

[7] D. Kim and S. Kang, “Dual region write buffering: Making large-scale
nonvolatile buffer using small capacitor in ssd,” in Proceedings of the
30th Annual ACM Symposium on Applied Computing, ser. SAC ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
2039–2046.

[8] S. J. Han, D. H. Kang, and Y. I. Eom, “Hybrid write buffer algorithm
for improving performance and endurance of nand flash storages,” in
2016 IEEE International Conference on Consumer Electronics (ICCE),
2016, pp. 83–84.

[9] S. Ikegawa, F. B. Mancoff, J. Janesky, and S. Aggarwal, “Magnetore-
sistive random access memory: Present and future,” IEEE Transactions
on Electron Devices, vol. 67, no. 4, pp. 1407–1419, 2020.

[10] S. Ikegawa, F. B. Mancoff, and S. Aggarwal, “Commercialization of
mram – historical and future perspective,” in 2021 IEEE International
Interconnect Technology Conference (IITC), 2021, pp. 1–3.

[11] H. Farbeh and N. Rohbani, “Pcm-oriented cache management strategies
for solid-state disks,” in 2018 Real-Time and Embedded Systems and
Technologies (RTEST), 2018, pp. 16–23.

[12] D. Liu, T. Wang, Y. Wang, Z. Shao, Q. Zhuge, and E. H.-M.
Sha, “Application-specific wear leveling for extending lifetime of
phase change memory in embedded systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 33,
no. 10, pp. 1450–1462, 2014.

[13] S. J. Kwon, “Non-volatile translation layer for pcm+nand in wearable
devices,” IEEE Transactions on Consumer Electronics, vol. 63, no. 4,
pp. 483–489, 2017.

[14] Zhao et al., “Architectural exploration to address the reliability chal-
lenges for reram-based buffer in ssd,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 66, no. 1, pp. 226–238, 2019.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3291671

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yonsei Univ. Downloaded on August 14,2023 at 06:38:24 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

[15] H. Chen, C. Li, Y. Pan, M. Lyu, Y. Li, and Y. Xu, “Hcftl: A locality-
aware page-level flash translation layer,” in 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2019, pp. 590–593.

[16] “U mass trace repositor,” http://traces.cs.umass.edu.
[17] “Storage networking industry association,” http://iotta.snia.org.
[18] (2023) Supplementary Data. [Online]. Available: https://dtl.yonsei.ac.

kr/docs/UWLsuppl.pdf

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3291671

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yonsei Univ. Downloaded on August 14,2023 at 06:38:24 UTC from IEEE Xplore. Restrictions apply.

